U	UNIVERSIDADE FEDERAL DE UBERLÂNDIA FICHA DE DISCIPLINA					
DISCIPLINA:	Tópicos Especiais em Modelagem, Controle e Otimização de Sistemas I:					
	Simulação de plantas inteiras					
PERÍODO:	CURSO: Pós-graduação em		FACULDADE DE ENGENHARIA			
	Engenharia Química		QUÍMICA - FEQUI			
Código:	Carga Horária	Créditos	Obrigatória	Optativa		
PEQ038B	60	04		X		

REQUISITOS (Disciplinas pré ou có-requisitos, n. de créditos, outros): Esta disciplina não requer conhecimentos adicionais àqueles já adquiridos em um curso regular de Engenharia Química

BJETIVOS DA DISCIPLINA (Ao final do curso o aluno será capaz de:)

Objetivos Gerais:

Apresentar uma visão geral dos simuladores de processo existentes, com ênfase nos simuladores livres e gratuitos;

Evidenciar os conhecimentos de modelagem (termodinâmicos, cinéticos, de fenômenos de transporte e de operações unitárias) indispensáveis na simulação de processos com simuladores.

Objetivos Específicos:

Explicitar as etapas necessárias à simulação de plantas inteiras, no estado estacionário, utilizando simuladores de processos;

Utilizar simuladores para projetar, desenvolver, analisar e otimizar parametricamente processos de grande interesse ao engenheiro químico, tais como: processamento e refino do petróleo; separação do ar; produção de petroquímicos; produção de álcool hidratado e anidro; ciclos de refrigeração.

EMENTA DO PROGRAMA

Introdução aos simuladores de processos disponíveis. Definição dos modelos utilizados na simulação, com ênfase na escolha dos modelos e propriedades termofísicas e cinéticas. Descrição das Operações Unitárias e especificação dos seus principais parâmetros de simulação. Passo a passo da construção do fluxograma de simulação no estado estacionário. Projeto, desenvolvimento, análise e otimização paramétrica de processos usando simuladores. Estudo de casos (estado estacionário).

BIBLIOGRAFIA								
Bibliografia Básica:								
COCO, the CAPE-OPEN to		simulator.	Disponível	em:				
http://www.cocosimulator.org/index.html, 20		simulator.	Disponível	em:				
http://sourceforge.net/projects/dwsim/, 2009.	cai process	simulator.	Disponivei	CIII.				
EMSO Process Simulator. Disponível em: http://www.enq.ufrgs.br/trac/alsoc, 2009.								
DIAS, R. S., SILVA, L. C., ASSIS, A. J. Plant wide simulation using the free chemical process								
simulator Sim42: Natural gas separation and reforming. Computer Applications in Engineering								
Education, p. n/a-n/a, 2009.								
ASSIS, A. J.; OLIVEIRA-LOPES, Luís Cláudio. Free software for chemical engineer's								
educational needs. In: ENPROMER 2005 - 2nd. Mercosur Congress on Chemical Engineering, 4th. Mercosur Congress on Process System Engineering, Rio de Janeiro. Proceedings , v. 1. pp. 1-								
10, 2005.	Engineering, Rio d	e Janeiro. Pro	ceedings, v. 1.	pp. 1-				
COTA, R., SATYRO, M., MORRIS, C., S	VRCEK B YO	IING B Dev	elopment of an	onen				
source chemical process simulator. Cache News , n. 57, Available:								
http://www.che.utexas.edu/cache/newsletters/fall2003_develop.pdf Online: 05/11/2006, 2003.								
DOUGLAS, J. M. Conceptual design of chemical processes, McGraw-Hill, 1988.								
RUSSEL, R. A., A flexible and reliable method solves single-tower and crude-distillation-column								
problems, Chem Eng 101 (1983), 53-59.								
SEIDER, W. D., SEADER, J. D., LEWIN, D. R. Process design principles: synthesis, analysis,								
and evaluation. John Wiley & Sons, 1999.	N D CHARDY	F/7 I A A	1	1				
TURTON, R., BAILIE, R. C., WHITING, W. B., SHAEIWITZ, J. A. Analysis, synthesis, and design of chemical processes, 2nd. ed., Prentice Hall, 2003.								
design of chemical processes, 2nd. ed., Pren	исе нап, 2003.							
Bibliografia Complementar: (para enriquecimento dos estudos)								
DATA/	DA	ATA/_	_/					

Diretor/a da FEQUI Portaria ____

Coordenador/a do PPGEQ Portaria _____

DESCRIÇÃO DO PROGRAMA:

Unidade 1 – Introdução aos simuladores de processos

- 1.1 Breve histórico da simulação de processos;
- 1.2 Simulação no estado estacionário e simulação dinâmica;
- 1.3 Principais simuladores de processos comerciais existentes;
- 1.4 Principais simuladores de processos livres e gratuitos existentes;

2 – Modelagem matemática e simulação de plantas inteiras

- 2.1 Modelos e propriedades termofísicas;
- 2.2 Principais operações unitárias usadas em simuladores de processos;
- 2.3 Modelos reacionais e cinéticos;
- 2.4 Grau de liberdade e simulação;

3 – Construção e simulação do Diagrama de Fluxo do Processo

- 3.1 Escolha e especificação das operações unitárias apropriadas;
- 3.2 A construção do Diagrama de Fluxo do Processo para fins de simulação de plantas inteiras no estado estacionário:
- 3.3 Presença de reciclos;
- 3.4 Definição dos parâmetros numéricos da simulação;
- 3.5 Inserção de tabelas e gráficos de resultados;
- 3.6 Entrada e saída de informação utilizando o protocolo CAPE-OPEN;

4 – Projeto, desenvolvimento, análise e otimização paramétrica de processos usando simuladores

4.1 – Estudo de casos envolvendo plantas inteiras: processamento e refino do petróleo; separação do ar; produção de petroquímicos; produção de álcool hidratado e anidro; ciclos de refrigeração; etc.