G	UNIVERSIDADE FEDERAL DE UBERLÂNDIA FICHA DE DISCIPLINA			
DISCIPLINA:	MÉTODOS MATEMÁTICOS EM ENGENHARIA QUÍMICA			
PERÍODO:	CURSO: Pós-Graduação em		FACULDADE DE ENG. QUÍMICA	
	Engenharia Química			
Código:	Carga Horária	Créditos	Obrigatória	Optativa
PEQ003	60 h. a.	4	$\overline{\checkmark}$	

REQUISITOS (Disciplinas pré ou có-requisitos, n. de créditos, outros):

OBJETIVOS DA DISCIPLINA (Ao final do curso o aluno será capaz de:)

Resolver equações diferenciais ordinárias e equações diferenciais parciais aplicadas a problemas de diversas áreas da Engenharia Química.

EMENTA DO PROGRAMA:

Espaços vetoriais. Sistema de equações diferenciais ordinárias. Matrizes de transição. Funções matriciais. Equações diferenciais ordinárias de coeficientes variáveis. Soluções em série de funções ortogonais. Problemas de Sturm-Liouville. Equações diferenciais parciais. Solução por separação de variáveis, superposição e similaridade. Transformadas integrais: Fourier e Laplace.

BIBLIOGRAFIA

- Bird, R. B.; Stewart, W. E. and Lightfoot, E. N.: Transport Phenomena. John Wiley & Sons. New York. 1960.
- Boyce, W. E.; Diprima, R. C.: Equações Diferenciais Elementares e Problemas de Valores de Contorno. 3a Edição, Rio de Janeiro, Editora Guanabara, 1979.
- Braun, M.: Equações Diferenciais e Suas Aplicações. Campus, 1979.
- Farlow, S. J.: Partial Differential Equations for Scientists and Engineers. Dover Publication, New York, 1993.
- Greenberg, M. D.: Foundations of Applied Mathematics. Prentice Hall, 1978
- Kreyszig, E.: Advanced Engineering Mathematics. Wiley, 1993
- Rice, R. G.; Do, D. D.: Applied Mathematics and Modeling for Chemical Engineers, John Wiley & Sons, 1995.
- Stephenson, G.: Uma Introdução às Equações Diferenciais Parciais para Estudantes de Ciências. 1a Edição, São Paulo, Edgard Blucher, 1975
- Wylie, C.R. and Barret, L. C.: Advanced Engineering Mathematics. 5a Edição, New York, Mcgraw-Hill, 1982

DATA 24 / 09 /2009

DATA 24 / 09 /2009

Universidade Federal de Uberlandia Prof* Dra Carla Eponina Hori

Coordenadora do PPGEQ/UFU

DESCRIÇÃO DO PROGRAMA: Teórico

- Revisão de equações diferenciais ordinárias de 1a ordem
 - Métodos de Solução:
 - Equações separáveis;
 - Equações homogêneas;
 - Equações diferenciais exatas;
 - Fatores integrantes;
 - Equações especiais de 1a ordem;
 - Problema de valor inicial Teorema da existência e unicidade de soluções;
 - Trajetórias ortogonais.
- Equações lineares de 2a ordem
 - o Teorema fundamental da existência e unicidade:
 - Família de soluções
 - Wronskiano
 - Soluções fundamentais.
 - o Equações homogêneas com coeficientes constantes Equação característica;
 - Equações não homogêneas:
 - Método dos coeficientes indeterminados;
 - Método de variação de parâmetros;
 - Equação de Euler-Cauchy;
 - Soluções por séries de potências:
 - Revisão de séries de potências;
 - Funções analíticas;
 - Teorema de Frobenius;
 - Solução por série de potências em torno de pontos ordinários;
 - Solução por série de potências em torno de pontos singulares;
 - o Aplicações Funções de Bessel, funções de Neumann e funções de Hankel;
 - Equação de Bessel modificada.
- Sistemas de equações diferenciais ordinárias de 1a ordem
 - o Revisão de álgebra linear: espaços vetoriais, vetores linearmente independentes, bases, dimensão, valores característicos, vetores característicos;
 - \circ Redução de uma equação diferencial linear de ordem m em um sistema de m equações diferenciais lineares de primeira ordem;
 - Aplicações da álgebra linear às equações diferenciais ordinárias Espaço de soluções;
 - o Conceitos fundamentais na resolução de sistemas de EDOs:
 - Soluções matrizes fundamentais;
 - Funções matriciais;
 - o Sistemas lineares homogêneos com coeficientes constantes;
 - Métodos dos valores característicos:
 - Valores característicos reais e distintos;
 - Valores característicos reais e iguais;
 - Valores característicos complexos;

DESCRIÇÃO DO PROGRAMA (Continução):

- A Transformada de Laplace
 - Fundamentos
 - O método geral;
 - A transformada de funções especiais;
 - A expansão de Heaviside;
 - Propriedades da transformada de Laplace;
 - A transformada de Laplace de funções periódicas;
 - Solução de equações diferenciais por transformada de Laplace;
- Problemas de valores de contorno e teoria de Sturm-Liouville
 - o Problemas de valores de contorno lineares homogêneos;
 - Fundamentos gerais:
 - Valores e funções característicos;
 - Identidade de Lagrange
 - o Problema de Sturm-Liouville;
 - o Problemas de valores de contorno não homogêneos;
 - o Problemas de Sturm-Liouville singulares;
- Equações diferenciais parciais (EDPs)- conceitos básicos
 - o Introdução;
 - o EDPs de 1a ordem quasi-linear;
 - o Solução geral.
 - o Equações diferenciais parciais quasi-lineares a duas variáveis independentes
 - Característica e classificação de EDPs;
 - Resolução de EDPs:
 - Método de similaridade;
 - Separação de variáveis
 - Transformada de Laplace;
 - Dicas de solução;
- Separação de variáveis e séries de Fourier
 - O método da separação de variáveis;
 - Séries de Fourier;
 - o Fórmulas de Euler-Fourier;
 - O teorema de Fourier;
 - o Forma complexa da série de Fourier.
 - o Aplicações;
- Equações diferenciais parciais a equação da onda
 - o Introdução
 - o Solução de D'Alembert;
 - o Funções pares, ímpares e periódicas;
 - o A corda finita.

DESCRIÇÃO DO PROGRAMA (Continução):

- Equações diferenciais parciais equação da difusão
 - o Condução do calor: barra com extremidades mantidas a 0° C;
 - O Condução do calor: barra sujeita a outras condições laterais.
 - o Equação da difusão bidimensional estacionária (equação de Laplace)
- Resolvendo EDPs
 - Separação de Variáveis:
 - Homogeneização de condições de contorno;
 - Generalização dos problemas de valores e funções características;
 - o Funções características encontradas em problemas da Engenharia Química:
 - Geometria plana;
 - Geometria cilíndrica;
 - Geometria esférica
- Aplicações
 - o EDPs homogêneas;
 - o EDPs não homogêneas;